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Outline

1. Phased Genome Assembly
GenomeScope & FALCON-Unzip

2. Personalized-Omics
Complex SVs and oncogene amplifications 
in breast cancer



Sequence Assembly Problem

2. Construct assembly graph from overlapping reads
…AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC

CAACCTCGGACGGACCTCAGCGAA…

 1. Shear & Sequence DNA

3. Simplify assembly graph

On Algorithmic Complexity of Biomolecular Sequence Assembly Problem
Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542
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Diploid Assembly Problems

Assembly becomes more fragmented
• A. thaliana inbred with short reads: ~100kbp contig N50 
• A. thaliana outbred with short reads: ~10kbp contig N50

Assembly sequence & size will be distorted
• Regions of low heterozygosity will be assembled together 

-> reduces assembly from true diploid size
• Regions of high heterozygosity will be split apart

-> haplotypes may be next to each other in scaffolds or left out

“Mosaic” consensus sequences*
• Sequence will arbitrarily switch from maternal to paternal alleles
• May be “read incoherent” and not supported by any sequencing reads

Critical genes may be assembled into 0, 1, or 2 copies (or more)!
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Quake: Quality-aware detection and 
correction of sequencing errors 

Quake: quality-aware detection and correction of sequencing errors
Kelley, DR, Schatz, MC, Salzberg, SL (2010) Genome Biology 11:R116

Reference-free approach for 
correcting sequencing errors

1. Scan reads, count #occurrences 
of all k-mers using Jellyfish

2. Analyze k-mer profile to find 
local minimum between error k-
mers (occur < ~5 times) and 
trusted k-mers (occur > 5 times)

3. For each untrusted k-mer in a 
read, search for minimum # of 
substitutions to become trusted
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Heterozygous Kmer counting
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Heterozygous Kmer Profiles

0.1% heterozygosity 1% heterozygosity 5% heterozygosity

• Heterozygosity creates a characteristic “double-peak” in the Kmer profile
• Second peak at twice k-mer coverage as the first: heterozygous kmers average 

50x coverage, homozygous kmers average 100x coverage

• Relative heights of the peaks is directly proportional to the heterozygosity rate
• The peaks are balanced at around 1.25% because each heterozygous SNP 

creates 2*k heterozygous kmers (typically k = 21)



GenomeScope Model

Analyze k-mer profiles using a mixture model of 4 negative binominal components
• Components centered at 1,2,3,4 * λ

• Four components capture heterozygous and homozygous unique (α,β) and 2 copy 
repeats (γ,δ). Higher order repeats do not contribute a significant number of kmers

• Negative binomial instead of Poisson to account for over dispersion observed in real 
data (especially PCR duplicates); variance modeled by ρ

f(x) = G
n
↵NB(x,�,�/⇢) + �NB(x, 2�, 2�/⇢) + �NB(x, 3�, 3�/⇢) + �NB(x, 4�, 4�/⇢)

o

↵ = 2(1� d)(1� (1� r)k)
� = (1� 2d)(1� r)k + d(1� (1� r)k)2

� = 2d(1� r)k(1� (1� r)k)
� = d(1� r)2k

k is the k-mer length used when 
constructing the k-mer profile. 
r is the rate of heterozygosity between 
sets of chromosomes
d represents the percentage of the 
genome that is two-copy repeat

Fit model with nls, infer rate of heterozygosity, genome size, unique/repetitive 
content, sequencing error rate, rate of PCR duplicates



Simulated Results
GenomeScope
Truth
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A.thal D.mel E.coli A.thal D.mel E.coli A.thal D.mel E.coli

“Easy”
0.1% Sequencing Error

No PCR Duplicates

“Typical”
1.0% Sequencing Error

1x PCR Duplicates

“Extreme”
2.0% Sequencing Error

2x PCR Duplicates

Introduce SNPs into A. thaliana, D. melanogaster, or E. coli at known rates, 
simulate shotgun sequencing with specified rates of sequencing error and PCR 
duplications
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In silico E. coli population sequencing
“Synthetic F1 Genome”

Mix equal numbers of real Illumina reads from pairs of 5 different E. coli isolates 
that have finished genomes with varying rates of similarity

Compare results to mapping pipeline (BWA+SAMTools) and MUMmer/DNADiff
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Understanding DNADiff

Observe that the difference between the rate of heterozygosity estimated by 
GenomeScope was generally higher than DNADiff, and that it was correlated with 
the rate of heterozygosity

The difference was strongly correlated with the size difference between the genomes

Conclude that DNADiff is underestimating the true rate because it doesn’t 
include bases in regions that don’t align!
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GenomeScope: Fast genome analysis from short reads
http://qb.cshl.edu/genomescope/

Evaluated on several genomes with published rates of heterozygosity:
• L. calcarifer (Asian seabass), D. melanogaster (fruit fly), M. undulates

(budgerigar), A. thaliana Col-Cvi F1 (thale cress), P. bretschneideri (pear), C. gigas
(Pacific oyster)

• Agrees well with published results:
• Rate of heterozygosity is typically higher but likely correct.
• Genome size of plants inflated by organelle sequences (exclude very high freq. kmers)Vurture, GW*, Sedlazeck FJ*, Nattestad, M, Underwood, C, Fang, H, Gurtowski, J, Schatz, MC. bioRxiv



Assembly Complexity
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FALCON-unzip: Phased Diploid Genome Assembly

“Bubbles” caused 
by SV between 
homologous 

copies

Branching
point caused 
by repeats

Assembly graph from A. thaliana Ler-0 + Col-0 data

The graph “diameter” ~ 12 M bp
Mean edge size=17.4 k bp



SNPs SNPs
SV SV

SNPs

FALCON FALCON-Unzip

Associate contig 1
(Alternative allele)

Associate contig 2
(Alternative allele)

Primary contig

Initial assembly graph

Phase heterozygous SNPs and
identify the haplotype of each read

SNPs SNPs SNPsSVsSVs

Haplotype resovled assembly graph

Assembly output

Updated
primary
contig

haplotig 1 haplotig 2 haplotig 3

(a)

(b)

(b)

Algorithm overview

1. Assemble Genome with FALCON
• Consensus is a mosaic of the two alleles, except large SVs that form bubbles

2. Use bubbles to seed phasing in flanking regions
• Greedy analysis of heterozygous SNPs flanking SV regions

3. Update Assembly graph with phased sequences: Phased Haplotigs



Col-0 Cvi-0

Col-0 x Cvi-0
Image credits: 
Pajoro, et al, Trends in plant science 21.1 (2016): 6-8.

A. thaliana Assemblies
Two inbred lines, CVI-0 and Col-0, were sequenced 
separately about 1.5 years ago with P5C3 chemistry
-Compare Col-0 assembly to TAIR reference
-Establish very high quality reference for CVI

Characterize the variations between the two strains 
with the per-strain haploid assemblies:
-High SV density: big SV every 80 kb
-High SNP density: SNP every 100 to 300 bp

In silico diploid dataset: 
-Mixture of the two datasets to emulate a diploid genome at 

about 80x coverage.
-Useful for testing and development

Genuine diploid dataset: 
-Sequencing of an F1 progeny to 120x coverage

9.49 Mb haplotype fused assembly graph



Cumulative sequence length of three Arabidopsis F1 assemblies 
created by FALCON-Unzip, Platanus, and SOAPdenovo compared to 
the TAIR10 reference. 

A. thaliana F1 Assembly Results



C. pyxidata
(Coral fungus)

Cabernet 
Sauvignon

T. guttata
(Zebra finch)$* Human*

Haploid Genome Size: ~ 44 Mb ~ 500 Mb ~1.2 Gb ~ 3 Gb
Sequencing Coverage 4.1 Gb / 95x 73.7 Gb / 147x 50 Gb / 42x 255 Gb / 85x

Primary contig size 41.9 Mb 591.0 Mb 1.07 Gb 2.76 Gb
Primary contig N50 1.5 Mb 2.2 Mb 3.23 Mb 22.9 Mb

Haplotig size 25.5 Mb 372.2 Mb 0.84 Gb 2.0 Gb
Haplotig N50 872 kb 767 kb 910 kb 330 kb

$ Thanks to Erich Jarvis for permission to use preliminary data

* Preliminary results. Fast file system and efficient computational infrastructure are currently needed for large genomes. 

FALCON-unzip:
Phased Diploid Genome Assembly with PacBio Long Reads

Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing
Chin, CS, Peluso, P, Sedlazeck, FJ, Nattestad, M, Concepcion, GT, Clum, A, Dunn, C, O'Malley, R, Figueroa-Balderas, R, 
Morales-Cruz, A, Cramer, GR, Delledonne, M, Luo, C, Ecker, JR, Cantu, D, Rank, DR., Schatz, MC 
(2016) Nature Methods doi:10.1038/nmeth.4035



Outline

1. Phased Genome Assembly
GenomeScope & FALCON-Unzip

2. Personalized-Omics
Complex SVs and oncogene amplifications 
in breast cancer



Importance of Personal Genomes

Tewhey et al (2011) 
Nat. Rev. Gen.

Functional data analysis often performed relative
to a standard reference genome, but there are
many reasons to analyze relative to a phased
personal genome

• More accurate read mapping: especially reads
spanning significant structural variations

• Genomic insights into the expression program:
mutations of splice sites or regulatory elements,
CNVs modulate expression levels, gene fusions

• Relate regulatory variants to expression of
genes: cis versus trans effects, allele-specific
expression, allele-specific binding

• Detailed analysis of inheritance and haplotypes
- …



Personal Genome Projects

ENCODE

Genomic: Illumina + PacBio + 10X 
Functional: RNA-seq, ChipSeq, DNAase-seq

4 individuals: 2 male + 2 female

MaizeCode

Genomic: Illumina + PacBio + 10X
Functional: RNA-seq, ChipSeq, MNase-seq

4 accessions: 2 maize + 2 teosinte



SK-BR-3

(Davidson et al, 2000)

Most commonly used Her2-amplified breast cancer cell line

Can	we	resolve	the	complex	structural	variations,	especially	around	Her2?

Ongoing	collaboration	between	JHU,	CSHL	and	OICR	to	de	novo assemble	
the	complete	cell	line	genome	with	PacBio	long	reads

Maria Nattestad



Genome-wide	coverage	averages	around	54X	
Coverage	per	chromosome	varies	greatly	as	expected	from	previous	karyotyping	results

co
ve

ra
ge

Genome Wide Coverage Analysis



Split-Read	basedAssembly-based

Alignment	with	
BWA-MEM

Copy	number	
analysis	with	
Ginkgo

SV-calling	from	
split	reads	with	

Sniffles

Validations SplitThreader

Assembly	with	
Falcon	on	
DNAnexus

Alignment	with	
MUMmer

Call	variants	
between	

consecutive	
alignments	with	
Assemblytics

Call	variants	
within	

alignments	with	
Assemblytics

~ 750 long-range variants
>10kb distance

~ 11,000 local variants
50 bp to 10 kbp

Assembly:
Total: 2.97Gb
Max: 19.9 Mb
N50: 2.46 Mb

Structural Variation Analysis



Assemblytics:	Assembly-Based	Variant-Caller

reference

contig

Insertion
reference

contig

Deletion

reference

contig

Repeat	Expansions

reference

contig

Tandem	Contractions
reference

contig

Tandem	Expansions

reference

contig

Repeat	Contractions

Defined	point

Overlapping	
alignments	suggest	
tandem	repeat	

Gap	where	
sequences	do	not	
align	uniquely	

suggests	a	repeat

Assemblytics: a web analytics tool for the detection of variants from an assembly
Nattestad, M, Schatz, MC (2016) Bioinformatics doi: 10.1093/bioinformatics/btw369





Assembly-based analysis highly effective for local SVs (<10kbp)
• ~11,000 SVs between 50bp and 10kbp in size, totaling >10Mbp of variation
• Essentially perfect positive predictive value

Alignment artifacts confound larger events (>10kbp)
• WGA alignments confused by large repetitive elements near SVs
• SV breakpoints may be poorly spanned by a contig

• ~100bp on one side, 1Mbp on the other



Alignment based analysis greatly improved by long reads
– More confident mappings, Improved chances of spanning events
– However, many SVs lost due to poor alignments and poor PacBio support

• LUMPY fails on reads that span more than 1 breakpoint, poor localization

New methods in development: NGM-LR + Sniffles
1. NGM-LR: Improve mapping of noisy long reads
2. Sniffles: Integrates SV evidence from split-read alignments, alignment fidelity  

(CIGAR strings and MD tags)

Alignment-Based Structural Variation Analysis

Chromosome	A

Chromosome	B



Mapping	a	~500bp	deletion

BWA-MEM

NGM-LR

Similar issues for insertions, inversions; or Nanopore sequencing
Improved seeding, improved gap scoring: convex instead of affine



Analysis	by	Sniffles
• ~750	variants	>=	10kbp
• ~200	balanced	translocations
• Requires	10	split	reads	

broken	within	a	200	bp	
interval	on	both	sides

Long Range Variations in SK-BR-3

Fritz Sedazeck



Long-range	structural	variants	found	by	Sniffles



Long-range	structural	variants	found	by	Sniffles
Her2 Chromosome	17

Chromosome	8



Her2

Chr 17
Chr 8

1. Healthy	chromosome	17	&	8
2. Translocation	into	

chromosome	8
3. Translocation	within	

chromosome	8
4. Complex	variant	and	

inverted	duplication	within	
chromosome	8

5. Translocation	within	
chromosome	8



Her2

Chr 17
Chr 8

1. Healthy	chromosome	17	&	8
2. Translocation	into	

chromosome	8
3. Translocation	within	

chromosome	8
4. Complex	variant	and	

inverted	duplication	within	
chromosome	8

5. Translocation	within	
chromosome	8

Inferring the evolution of 
genome structure



Transcriptome analysis with IsoSeq

IsoSeq
Long-read	RNA-seq

Gene	fusions Novel	isoforms

DNA + RNA evidence:
• 13 confirmed in previous 

literature
• 4 novel fusions

• CYTH1-MTBP
• SAMD12-EXT1
• PHF20-PR4-723E3.1
• AMZ2-CASC8

RNA evidence only:
• 188 fusions

Many Novel Isoforms:
~ 45,000 novel isoforms (2+ reads)

~ 7,400 with 10+ reads
Highly Enriched for Oncogenes

279 putative novel genes:
• 10+ reads of the same isoform
• Not overlapping existing 

annotation



CYTH1-EIF3H gene fusion

CYTH1

EIF3H

Chr	17

Chr	8

CYTH1 EIF3H

30 IsoSeq reads

8 kb 

3.7 Mb

27
36

SplitThreader: Exploration and analysis of rearrangements in cancer genomes
Nattestad, M, Alford, MC, Sedlazeck, FJ, Schatz, MC (2016) bioRxiv. doi: https://doi.org/10.1101/087981



The genome informs the transcriptome 

Explain amplifications

Trace gene fusions

Data and additional results: http://schatzlab.cshl.edu/data/skbr3/



The genome informs the transcriptome 
… and informs the prognosis

Explain amplifications

Trace gene fusions

Data and additional results: http://schatzlab.cshl.edu/data/skbr3/



PacBio Roadmap

PacBio RS II

$750k instrument cost
1895 lbs

~$75k / human @ 50x

SMRTcell

150k Zero Mode Waveguides
~10kb average read length

~1 GB / SMRTcell
~$500 / SMRTcell



PacBio Roadmap

PacBio Sequel

$350k instrument cost
841 lbs

~$30k / human @ 50x

SMRTcell v2

1M Zero Mode Waveguides
~15kb average read length

~10 GB / SMRTcell
~$1000 / SMRTcell



Oxford Nanopore

MinION

$2k / instrument
1-2 GB / day

~$300k / human @ 50x

PromethION

$75k / instrument
>>100GB / day

??? / human @ 50x

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome
Goodwin, S, Gurtowski, J, Ethe-Sayers, S, Deshpande, P, Schatz MC* McCombie, WR* (2015) Genome Research doi: 10.1101/gr.191395.115



Understanding Genome Structure & Function

Single Molecule Sequencing
• Now have the ability create reference quality assemblies 

of many microbes, fungi, plants, and animals
• Using this technology to find 10s of thousands of novel 

structural variations per human genome leading to novel 
gene structures and regulatory contexts

Single Cell Sequencing
• Exciting technologies to probe the genetic and molecular

composition of complex environments
• We have only begun to explore the rich dynamics of

genomes, transcriptomes, and epigenomics

These advances give us incredible power to study how genomes mutate and evolve
With several new biotechnologies in hand,  we are now largely limited only by our 

quantitative power to make comparisons and find patterns
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